Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Pesqui. bras. odontopediatria clín. integr ; 22: e210120, 2022. tab, graf
Article in English | LILACS, BBO | ID: biblio-1422283

ABSTRACT

Abstract Objective: To examine the cyclic fatigue resistance and surface topography of TruNatomy and ProTaper Gold nickel-titanium rotary files and evaluate the presence of alterations to surface topography following instrumentation in simulated curved canals. Material and Methods: Twenty-four nickel-titanium instruments, twelve each of TN and PTG file systems, were evaluated for cyclic fatigue resistance. The rotary files were rotated in a simulated root canal with standardized diameter, angle of curvature, and radius of curvature in a custom-made cyclic fatigue testing device until the instrument fracture occurred. The time to fracture for each instrument was recorded with a stopwatch; in seconds in each group. Fractured instruments were subjected to atomic force microscopy analysis measuring the average roughness and the root mean square values to investigate surface features of endodontic files. Mean values and standard deviation were calculated. Data were analyzed using the Mann-Whitney U test. Results: Time to fracture was marginally higher in PTG instruments than in the TN file systems. PTG files exhibited higher surface roughness when compared with TN files (p<0.05). Conclusion: TN file system had a higher cyclic fatigue resistance than PTG. Cyclic fatigue causing file breakage did affect the surface topography of the files. PTG files showed a higher surface porosity value than the TN files (AU).


Subject(s)
Titanium/chemistry , Microscopy, Atomic Force/instrumentation , Dental Alloys , Dental Instruments , Endodontics , Surface Properties , Statistics, Nonparametric , Dental Pulp Cavity , Hardness Tests , Nickel/chemistry
2.
Article in English | LILACS, BBO | ID: biblio-1351218

ABSTRACT

ABSTRACT Objective: Tocompare the effect of tooth brushing on surface roughness of Resin-Modified Glass Ionomer Cement (RMGIC; GC Gold label 2LC Light Cured Universal Restorative) and Glass Hybrid (GH; GC EQUIA SYSTEM- EQUIA Forte™ Fil and EQUIA Forte™ Coat) restorative material at 1- and 3-months interval simulated by tooth brushing. Material and Methods: RMGIC and GH material specimens (20 each) were prepared according to manufacturer instructions in 10mm × 2 mm dimensions using a mylar strip. A specially designed toothbrush simulator was used along with Oral B Pro 2 2000N powered toothbrush and Colgate Total dentifrice (Colgate-Palmolive India limited; Relative dentin abrasivity - RDA:70- Low abrasive) to perform brushing strokes. Specimens were subjected to surface roughness analysis before and after simulated tooth brushing at baseline, 1, and 3 months. Results: The intragroup comparison was done using repeated-measures ANOVA. Intergroup comparisons were done using an independent sample t-test and General Linear Model (ANCOVA). Surface roughness increased from baseline through 3 months in both RMGIC and GH groups. The mean surface roughness in RMGIC group was significantly higher than GH group at baseline 1 and 3-months, respectively (p<0.001, <0.001, and <0.001). Interaction between group and baseline surface roughness was not significant (p=0.466). The estimated marginal means were significantly higher in RMGIC than GH group (p=0.008). Conclusion: The surface roughness of both RMGIC and GH restorative increased from baseline to 1 month and 3 months after the simulated toothbrushing protocol. GH exhibited significantly lower surface roughness than RMGIC at all the tested intervals.


Subject(s)
Surface Properties , Toothbrushing/instrumentation , Microscopy, Atomic Force/instrumentation , Dental Materials , Glass Ionomer Cements , In Vitro Techniques/methods , Analysis of Variance , Statistics, Nonparametric , India/epidemiology
3.
Braz. J. Pharm. Sci. (Online) ; 56: e18440, 2020. tab, graf
Article in English | LILACS | ID: biblio-1249159

ABSTRACT

In this study, naftifine (a topical antifungal drug) loaded poly(vinyl) alcohol (PVA)/sodium alginate (SA) nanofibrous mats were prepared using the single-needle electrospinning technique. The produced nanofibers were crosslinked with glutaraldehyde (GTA) vapor. The morphology and diameter of the electrospun nanofibers were studied by scanning electron microscopy (SEM). SEM images showed the smoothness of the nanofibers and indicated that the fiber diameter increased with crosslinking and drug loading. Atomic force microscopy (AFM) images confirmed the uniform production of the scaffolds, and elemental mapping via energy dispersive X-ray spectroscopy (EDS) showed the uniform distribution of the drug within the nanofibers. An attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy study demonstrated that naftifine has sufficient secondary interactions with the polymer blend. The crosslinking treatment decreased the burst drug release effectively and the release mechanism followed Korsmeyer-Peppas Super Case-II transport. Overall, these findings suggest the potential use of naftifine-loaded PVA/SA nanofibers as a topical antifungal drug delivery system.


Subject(s)
Administration, Topical , Nanofibers/analysis , Spectrometry, X-Ray Emission/instrumentation , Spectrum Analysis/instrumentation , Pharmaceutical Preparations/administration & dosage , Drug Delivery Systems , Spectroscopy, Fourier Transform Infrared/methods , Microscopy, Atomic Force/instrumentation , Alginates/adverse effects , Drug Liberation
4.
Natal; s.n; 2018. 69 p. tab, ilus.
Thesis in Portuguese | LILACS, BBO | ID: biblio-1510559

ABSTRACT

O objetivo deste trabalho foi avaliar a rugosidade superficial, a molhabilidade, a disposição em profundidade das partículas de carga, o mapeamento de elementos químicos, a microtopografia em 3D e a micromorfologia de compósitos convencionais e bulk fill após polimento adicional. Éspécimes foram preparados de cada compósito testado, sendo quatro do tipo bulk fill (Filtek Bulk, Fill Tetric N-Ceram Bulk Fill, Opus Bulk Fill e X-tra Fil) e quatro convencionais (Filtek Z250 XT, Grandioso, Tetric NCeram, Vittra APS), de acordo com três técnicas de acabamento/polimento/polimento adicional (n = 10): sem acabamento e polimento, acabamento e polimento com borrachas abrasivas (Astropol), acabamento e polimento com Astropol mais polimento adicional com escova de carbeto de silício. A rugosidade superficial (Ra) e o ângulo de contato foram medidos usando-se um perfilômetro e goniômetro adaptado, respectivamente. A microtopografia 3D foi avaliada utilizando microscopia de força atômica (MFA), enquanto a micromorfologia e a disposição em profundidade das partículas de carga, através da microscopia eletrônica de varredura (MEV). O mapeamento de elementos químicos foi avaliado por meio de Espectroscopia por energia dispersiva de raio-X (EDS). A rugosidade e o ângulo de contato foram analisados pelo ANOVA-dois fatores e teste de Tukey (p <0,05); os demais dados foram analisados descritivamente. A disposição das partículas de carga em profundidade de todas as resinas envolvidas neste estudo apresentou uma camada superficial rica em matriz orgânica e uma camada subsuperficial rica em partículas de dimensões mais diminutas. O polimento adicional: diminuiu a rugosidade superficial das resinas Filtek Bulk Fill, Vittra APS, Tetric N-ceram Bulk Fill e X-tra fil; aumentou o valor do ângulo de contato da X-tra Fil e diminuiu da Filtek Z250 XT. Nas análises para microtopografia em 3D e a micromorfologia, superfícies mais lisas e uniformes foram observadas em todas as resinas. Os elementos: carbono (C), cxigênio (O), silício (Si), zircônia (Zr) e alumínio (Al) foram presentes em todas as resinas compostas. O bário (Ba) foi ausente na Filtek Z250 XT, Filtek Bulk Fil e Vittra APS. O carbono foi predominante em todas as resinas. Após polimento adicional, houve um aumento na detecção de oxigênio para todas as resinas, exceto para Tetric N-Ceram e Xtra Fil e uma diminuição de carbono, exceto para a Tetric N-Ceram Bulk Fil. O silício diminuiu apenas nas resinas Z250 XT, Tetric N-Ceram e Tetric N-Ceram Bulk Fill. A zircônia diminuiu para a Tetric N-Ceram Bulk Fill e o alumínio para Z250 XT e Tetric N-Ceram Bulk Fill. O bário aumentou para Opus Bulk fill e X-tra Fil. O titânio foi ausente para todas as resinas. Portanto, o polimento adicional melhorou as propriedades de superfície das resinas estudadas (AU).


The objective of this study was to evaluate the surface roughness, wettability, the depth distribution of the charge particles, the mapping of chemical elements, the 3D microtopography and the micromorphology of the composites of the conventional and bulk fill after additional polishing. The specimens were prepared from each of the composites tested, four of them being bulk fillers (Filtek Bulk Fill Tetric N-Ceram Bulk Fill Opus Bulk Fill X-tra Fil) and four conventional ones (Filtek Z250 XT, Grandioso, Tetric N-Ceram, Vittra APS ), according to three additional finishing / polishing / polishing techniques (n = 10): without finishing and polishing, finishing and polishing with abrasive rubbers (Astropol), finishing and polishing with Astropol plus additional polishing with silicon carbide brush. The surface roughness (Ra) and contact angles were measured using a profilometer and adapted goniometer, respectively. The 3D microtopography was evaluated using atomic force microscopy (AFM); while the micromorphology and the in-depth arrangement of the charge particles by scanning electron microscopy (SEM). The mapping of chemical elements was evaluated by means of X-ray Dispersive Energy Spectroscopy (EDS). The roughness and the contact angle were analyzed by ANOVA- two factors and Tukey test (p <0.05); the other data were analyzed descriptively. The arrangement of the in-depth charge particles of all the resins involved in this study had an organic matrix rich surface layer and a particulate rich subsurface layer of smaller dimensions. Addicional polishing: reduced surface roughness of Filtek Bulk Fill resins, Vittra APS, Tetric N-ceram Bulk Fill and X-trafil resins; increased the contact angle value of the X-tra Fil and decreased the Filtek Z250 XT. In the analyzes for 3D microtopography and micromorphology, smoother and more uniform surfaces were observed in all a resins. The elements: carbon (C), oxygen (O), silicon (Si), zirconia (Zr) and aluminum (Al) were present in all composite resins. Barium (Ba) was absent on Filtek Z250 XT, Filtek Bulk Fil and Vittra APS. Carbon was predominant in all resins. After additional polishing, there was an increase in oxygen detection for all resins except for Tetric N-Ceram and X-tra Fil and a decrease in carbon except for Tetric N-Ceram Bulk Fil. Silicon decreased only in the Z250 XT, Tetric N-Ceram and Tetric NCeram Bulk Fill resins. Zirconia decreased for Tetric N-Ceram Bulk Fill and aluminum for Z250 XT and Tetric N-Ceram Bulk Fill. Barium increased for Opus Bulk fill and X-tra Fil. Titanium was absent for all resins. Therefore, additional polishing improved the surface properties of the resins studied (AU).


Subject(s)
Microscopy, Electron, Scanning/instrumentation , Wettability , Microscopy, Atomic Force/instrumentation , Composite Resins/chemistry , Dental Polishing , In Vitro Techniques/methods , Analysis of Variance , Dental Materials , Esthetics, Dental , Physical Phenomena , Mouth Rehabilitation
SELECTION OF CITATIONS
SEARCH DETAIL